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RCNN detections

Dependency Relations

Image Inner Product: Fragment Similarity Sentence
Fragments Fragments
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| 000«
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Image-Sentence Similarity

“Black dog chasing
a young child”

(AMOD, black, dog)
(DEP, chasing, dog)
(DOBJ, child, chasing)
(AMOD, young, child)
(DET, a, child)
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S
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People riding on elephanis that
are walking through a river.

¥
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Text Encoding

v
thdlr - ﬁ
4

th.ph nt _ i .

v
Box Generator (§4.1)

Y
Shape Generator (§4.2)

v
Image Generator (§5)

this bird is red with white and has a very short beak
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Bfg-RASMK: EXFGE

Cross-domain Image
Reconstruction

Data-Driven Model-Driven
CNN
Sparse Representation Graphical Model Linear Nonlinear GAN
& &
Y3 Ya
ResNet

Sparse Coefficients

W(Wl b Wz)
. Photo patches

A list of weights
for sketch patches

y = ADx 1 bD /
///”/
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I Subspace Learning

Bff-BAREK: KRHIE

Chen, et al,
.. FaceSketchWild,
Traditional Methods+ Sparse Representation J. Zhu, et al, ACCV

CycleGAN, ICCV .
. | 1
Graphical Model ! !
. 1 1

P. Isola, et al, V. Patel, et al,

pix2pix, CVPR PS2-MAN, FG
Traditional Methods : :

2003 2015 12017 12018

gt mmm————— - * + +
I 1 I I
- 1 I 1
- 1 I 1
1 | I [

X. Tang, et al, L. Zhang, et al, X. Gao, et al, S. Zhang, et al,

EigenTransformation, FCN, ACM ICMR DGFL, UCAI pPGAN, IJCAI
ICCV :
1
i
" Fully Convolutional Networks .

M. Zhang, et al,

. . Corse-to-Fine,

DNN Methods 4 Generative Adversarial Networks AAA|

| Deep Graphical Feature Learning
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E{R-BHE &/ : pix2pix, conditional GAN

Pix2pix (conditional GAN) E&Z|EM&EFEHRE: Nhuinsk R g1t

[ ] U-Net(G) -

x
G(X) - y o
m D D
= =h —> —p — 1= - m
\\ » fake : real
\\\
s | T ' ‘ =
e A P
________ P || . |

B SRR AR P E S S B R B R |
 BITHIBISES  NKIFURE Lo an |
(i < ABETFLURS | SHURSAEEE RS ENEE |
Legan(6,D) = Ey[logD (x, )] + By ,[log(1 = D(x, G (x,2)))] | SEEEREM—E , HHENEELEENT '
| BIR | REINFESTAEMLEE , AT ABE

__________________________________________________________________________

L11(G) = Exy [lly — G(x, 2)|l1]

[ Phillip Isola, Jun-Yan Zhu, Tinghui Zhou and Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks. CVPR 2017.]
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HiGE-BHRA&mK: cycleGAN

CycleGAN EfRE|EGEIFRE: fHuink+IA—Emk

X /-_-\ Y X ./_ Y X Y eyvele-consistency
\“'—‘/ cycle-consistency |, ..\ > T @ \.... 1 =" loss
F loss = @« ‘—/.
(a) (b) : (©
Lean(G,Dy,X,Y) R — o
 BRR . BRRLURR | (NERAXHIRRLIRA MEIAIEE |

= Eypaara 109Dy (V)] + Exp 14 (x) [108(1 = Dy (G (x)))] ,
&, FERSINR—BUREK | ENERITEENSZ0EE |

Leaw(F, Dy, X, ) (W, SOB) | TIROMERE (K, iE) ,
= Eepaaca 09D (N + By piaian 081 = Dx(CODT |ty - Tyt , SCURS M IS ED
F, BEAT |

Lcyc(G,F) : o e N
—Er o lIFGCE) = xli] + By [IGEG) —ylly] B0 BIRTLURK , (FARBSHERNEEL i

[Jun-Yan Zhu, Taesung Park, Phillip Isola and Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks. ICCV 2017.]
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(D T3 B 11 [5] P 4% 09 A Bt i) {5 & BX

Motivation
X G Y
—
cGAN | \4. Y Reconstruction
},/ Loss
[ )
Photo Sketch
G
X Y
—
Cycle-Consistency VR N
CycleGAN Loss econstruction
Loss
5 | e
(@
X Gsubl Z Gsubz Y
EERES
; . Y Reconstruction
Our X Reconstruction Collaborative L
Loss Loss 088
\\_/)\v
F sub?2 F sub1
Photo Latent Space Sketch (b)

[ Mingrui Zhu, Jie Li, Nannan Wang and Xinbo Gao. A Deep Collaborative Framework for Face Photo-Sketch Synthesis. IEEE TNNLS 2019}



(D T3 B 11 [5] P 4% 09 A Bt i) {5 & BX

Deep Collaborative Framework: tiEI X3R5k

L(G,F,Dg) =

Eyy,2[l0gDg(x, Fsyp1 (v, 2), ¥)] +

Ey 2 [log(1 — Dg (%, Gsyps (%, 2), G (x, 2))) ]+
Ex,y,z[”Gsubl(x' z) — Foup1 (v, 2)|11]

E, ,z[”G(x;Z) —yll1]+
Yy \1 \

L(G,F,Dg) = /

Ex,y,z [logDr(x, Geyp1(x,2),y)] +

Ey,z [108(1 - DF(F(y' Z)' Fsubl(y' Z)r y))]+

Ex,y,z[”Fsubl(y; z) — Goyup1 (%, 2)|[4]

Ex,yhz[”G(y;Z) — x“l]+

[ Mingrui Zhu, Jie Li, Nannan Wang and Xinbo Gao. A Deep Collaborative Framework for Face Photo-Sketch Synthesis. IEEE TNNLS 2019] .

28



Average SSIM score (%) on the CUFS database and

FE 1iir [5] PO 4% ) A B i 1R 5 oK

the CUFSF database BigREiTNS
Methods | CUFS(%) | CUFSF(%)
pix2pix 49.39 39.65
CycleGAN 49.61 34.56
Our Method 52.44 42.24

Face recognition accuracy against variations of the

number of dimensions reduced by NLDA on the

CUFSF database.

Our Methog

80

fe))
o
T

NLDA on CUFSF

Recognition rate (%)
B
o

MRF
MWF
FCN
pix2pix i
CycleGAN
Our Method

I
50

1 L
100 150

L 1
200 250

The reduced number of dimensions
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B {Z-B K4 : Attention Transfer

Attention Transfer #11RiT# . HIRZKIR: BHBIELE. MEREL

groupl group2

group3

Ah A

AT loss

AT loss
Y

—WH W

HH

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

I TR, WAREMIREE, RERERN—FFR. XM EHNRARMERHER, ki

AR, B8RS RESARME—RILEORN, BOREHSNE.
ReRE: BEMRIBASBTALNIMG, HERTEGAMR? EARMA?

Bilg |

[ Sergey Zagoruyko and Nikos Komodakis. Paying More Attention to Attention: Improving The Performance of Convolutional

Neural Networks via Attention Transfer. ICLR 2017.]
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Motivation
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@&TF HIR

i 7% B9 A R B

Knowledge Transfer Based Photo-Sketch Synthesis Method:

Teacher-P: Pre-trained VGG-19

[ Mingrui Zhu, Nannan Wang, Jie Li and Xinbo Gao. Face Photo-Sketch Synthesis via Knowledge Transfer. IJCAI 2019] .

FIRIER

Stu-PtoS

Teacher-S: Pre-trained VGG-19

RE X

ey

F 3

/ Block \

»
<

DC1
A

Up-Conv (stride=1/2)
‘T 2’ I:I SE-ResBlock +
Z.. Dilated Convolution

Sid - Conv (stride=1)

D e
- Down-Conv (stride=2)

Knowledge Transfer

from Teacher to Student
v
A
H Knowledge Transfer
( = ,__\ ¢ between Two Student
- v
a4 Twm
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QET AT B AR B RS X

Comparisons

Average FSIM score (%) on the CUFS database and

the CUFSF database 1% EREITEMNE
Methods CUFS(%) | CUFSF(%)
pix2pix 0.7363 0.7283
CycleGAN 0.7219 0.7088
Our Method 0.7373 0.7311

Face recognition accuracy against variations of the
number of dimensions reduced by NLDA on the

CUFSF database.
Our Method DAES
..... NLDA on CUFSF
g0 - ]

DGFL
FCN
—iX2PiX
CycleGAN
PS2MAN
= Face SketchWild
== KnowledgeTransfer

IS
o

Recognition rate (%)

pix2pix CycleGAN  Our Method Ground Truth

. . L L L
50 100 150 200 250
The reduced number of dimensions
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@ EF Transformerfy A & E & & RX

Motivation
Convolution Transformer: Self-attention
K" QK"
1 Q 1234 1 1.2 3 4
2 _ 2
3 X -3
4 4
1234 1234
\: St 1 1
. S 2 Softmax 2
" =, 3 g
ANISIEE EHANE 5:1_' 4 4
8
= 1234 M z
3 1
SR g X —
4
153 R, FEBEE ¥2  BIESEETEER
TRiE . AR CE=EEX M RpE : ITEERXK

29




@ EF Transformery A & B 1R & X

A Sketch-Transformer Network

Residual Self-attention Module

|m——————————————————

Input Photo

- —
_-.

Attention Map

cin cin b

i
=
&
B
=
i
=]
ﬁ
1
14
H

Residual
— — } — ——
Self-attention Module

> FMAEFENNHEBEAEMEHMIDEN KT AKX RNEEN , RIEFEEEGNTELSE
> BARIEXGREERFNE TR NRIGERIINERS |, 1BEEREFEERANE NEAIRE

[M. Zhu, C. Liang, N. Wang, et al. A Sketch-Transformer Network for Face Photo-Sketch Synthesis. 1JCAI 202F.])



@ EF Transformery A & B 1R & X

Qualitative Comparisons:

/ C.; . .( {.: @ ) o ";\
AT 4 I (s

Test Photo DGFL p|x2plx CycleGAN PS2MAN  FaceSketchWild SCAGAN Ours Ground Truth ~ °*



@ EF Transformery A & B 1R & X

Quantitative Comparisons:

)

= :

= z

= =

sz Tz £

= ) < 2 < &

— o, 5} 2 w2 @) 3}

S d S - S 5] < =

Q @) e = A 2 &) 2

() i = @) [a ¥ & n n
CUFS | Photo LPIPS(alex) | - - 0.1993 0.2096 0.2464 - 0.1727 0.1538
LPIPS(squeeze) | - - 0.1830 0.2094 0.2158 0.1643  0.1310
LPIPS(vgg) | - - 0.3525 0.3882 0.3254 - 0.3053 0.2738

FSIM 1 - - 0.7726  0.7450 0.7819 - 0.7937 0.7851
FID | - - 73.56  80.44  65.04 - 80.53  27.88
Sketch LPIPS(alex) | 0.3316 04517 0.2263 0.2139 0.2961 0.2807 0.2408  0.1807
LPIPS(squeeze) | | 0.2635 0.3596 0.1552 0.1529 0.2265 0.2210 0.1722  0.1233
LPIPS(vgg) | 0.3654  0.4350 0.3734 03598 0.3707 0.3639 0.3627 0.3019

FSIM 71 0.7079  0.6936 0.7363 0.7219 0.7230 0.7114 0.7086 0.7350

FID | 70.81 69.93  449] 2376 4895 5926 38.61 @ 20.92

CUFSF | Photo LPIPS(alex) | - - 0.2463 0.2557 0.3145 - 0.1735 0.2199
LPIPS(squeeze) | - - 0.2005 0.2002  0.2853 - 0.1469 0.1714

LPIPS(vgg) | - - 0.4019 03791 0.4237 - 0.3128 0.3474

FSIM 7 - - 0.7777 0.7645 0.7812 - 0.8395 0.7861

FID | 390.82 1446  78.03 18.84  15.22

Sketch LPIPS(alex) | 0.3524  0.4793 0.2408 0.2371 0.3288 0.3288 0.2188 0.1971
LPIPS(squeeze) | | 0.2794 0.3895 0.1628 0.1589 0.2397 0.2473  0.1500 0.1349
LPIPS(vgg) | 0.3972  0.5305 0.3824 03744 0.4170 0.4053 0.3536 0.3400
FSIM 7 0.6957 0.6624 0.7283 0.7088 0.7233  0.6821 0.7270 0.7259

FID | 57.33 12440  35.52 14.62 6442  59.76 18.32 9.39
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7T~ , Part of Photo-Sketch Synthesis Results
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B

2N A BORR H--BU4EES pR st 7T~ , Part of Photo-Paper-Cutting Synthesis Results
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QEFEiE (Conclusions)
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Interpolation— blurred!

. AH®Z

LR image
éé”‘,)‘d— ‘}%BC >

True HR image
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EiRBOMEE: NAER

Multiple Frame Image Super-Resolution Reconstruction

am rw rmaddn” Cayyenm e iben " ywey =mad g ”
Tampaawad T T | i 5 wa i Eai f

Ll s ed kT O e el e Lo v e 647

3:1 scale-up in each axis using 9 images, with pure global translation between them

Can you read thas?
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EiR@oERE: NAS

Ex. Surveillance: License plate recognition

LPR, Reconnaissance Crimes...
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HiF@EnHmERE: ARHE

X. Xu, M. Yang, et al.

MCGAN, CVPR
1 .
E. Zhou, H. Fan, et al. S Zhu, S Liu. et al. : Y. ;-g:’q‘,]\'l;:agg\]/gtlfl'
BCCNN, AAAI CBN, ECCV : . !
1 =
! ! | 2017 P ! 2019
| | 1
. x . 1 7 5
2016 i 2018 i i
O. Tuzel, Y, Taguchi, et al. H. Huang, T. Tan, et al. Xin Yu. etal. Chih-Chung Hsu et al.,
GLN, arXiv 2016 Wavelet-SRNet, ICCV AEUN, CVPR SiIGAN, IEEE TIP
| |
! ]
Xin Yu. etal. Xin Yu. etal.
URDGN, ECCV TDAE, ECCV
BCCNN: Bi-channel Convolutional Neural Network TDAE: Transformative Discriminative Autoencoder
GLN: Global Local Network FSRNet: Face Super-Resolution Network
URDGN: Ultra-Resolving by Discriminative Generative Networks AEUN: Attribute Embedded Upsampling Network
CBN: Cascaded Bi-Network SiIGAN: Siamese GAN

MCCGN: multi-class GAN "



EFEBowEE: HXIT{E-GLU Network

O EARE : E_ 034t , FIEERS N ESIIREHNFE IR E R EIRRE

. . High-Res ‘ 4x GN ‘ 8x GN
Fully Connected Concatenation Convolutional O doconva fe510 deconv s [e-956
fc-256 fc-256
Low-Res —_— o | ¢ E gy fc-512 fc-256
Image fc—(128 X 128) fC—(lQS X 128)

L

bt
ﬂ Deconvolutional

convh-16 convb-16 convb-16

convT-64 conv-32 conv7-32

ﬁ = convh-16 conv7-64 conv7-64

conv-32 conv7-64

convb-16 conv7-64

~ Y g conv7-32

Global Upsampling Network (GN) Local Refinement Network (LN) convh-16
convh-1 convb-1 convbh-1

concatenation

concatenation

4 Layer LN (LN4)[6 Layer LN (LN6)[8 Layer LN (LN8)|

TRpE

> 2B EREREFNSEEENSSEETORA , BRI

> AREGREZEEREESAKRNLRER |

ARSI X e R =K
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[ Xin J, Wang N, Jiang X, Li J, Gao X, Li Z. Facial Attribute Capsules for Noise Face Super Resolution. AAAI-20]
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Methods PSRN SSIM  IFC PSRN SSIM  IFC PSRN SSIM  IFC Methods Performance Methods Performance
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VESPCN: Video-ESPCN (Efficient Sub-Pixel Convolutional Network)

FRVSR: Frame-Recurrent Video Super-Resolution
FSTRN: Fast Spatio-Temporal Residual Network

DUF: Dynamic Upsampling Filters

RBPN: Recurrent Back-Projection Network .
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T = T=5 T=r1 N
Methods PSRN  SSIM PSRN SSIM PSRN  SSIM SUE
Bicubic 29.95 0.8416 29.95 0.8416 29.95 0.8416 15000
DESR 32.19 0.8929 32.30 0.8953 32.09 0.8929 10000
VESPCN 33.07 0.9097 33.14 0.9112 32.79 0.9055 5000
LIU et.al 32.70 0.9033 32.82 0.9063 32.66 0.9033 o - = 1 -
SPMC 33.03 0.9066 33.23 0.9099 33.44 0.9132 Qcﬁ @Q” 0\3“ Q;zé O\)@
FRVSR 33.26 0.9105 33.42 0.9129 33.53 0.9147 ¢ <& & <
VSR_DUF 34.38 0.9290 34.14 0.9245 33.82 0.9214
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RBPN 33.16 0.9084 33.67 0.9158 33.91 0.9232 SHEMTTERL |, FIRIRE
MAFN 34.15 0.9237 34.59 0.9279 34.81 0.9318 BEEINRERNEHEUUNE

SHEGEZRRE

[XinJ, Wang N, Li J, Gao X, Li Z. Video Face Super-Resolution with Motion-Adaptive Feedback Cell. AAAI-20] 52
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Methods Seale Set5 Set14 B100 Urban100
PSRN SSIM PSRN SSIM PSRN SSIM PSRN SSIM
VDSR x2 3753 0.959 33.05 0913 31.90 0.896 30.77 0.914
Bicubic x2 33.66 0.930 3024 0.869 29.56 0.843 26.88 0.840
VDSR_BNN x2 3443 0.936 3094 0.882 30.05 0.856 27.54 0.860
VDSR_DoReFa x2 34.70 0.933 3122 0.876 30.25 0.849 28.25 0.865
VDSR_ABC x2 3535 0939 3171 088 30.68 0.861 28.77 0.878
VDSR_BAM x2 36.60 0.953 32.41 0.905 31.32 0.886 29.43 0.895
VDSR x3  33.66 0921 2977 0.831 28.82 0.798 27.14 0.828
Bicubic x3 3039 0.868 27.55 0.774 27.21 0.739 2446 0.735
VDSR_BNN x3 31.01 0.874 2815 0.791 27.57 0.755 25.01 0.758
VDSR_DoReFa x3 31.79 0.895 2868 0806 2798 0.766 2553 0.782
VDSR_ABC x3 32.01 0.898 2886 0.808 28.08 0.770 25.80 0.787
VDSR_BAM %3 32.52 0.907 29.17 0.819 28.29 0.782 26.07 0.799
VDSR x4 31.35 0.884 28.01 0.767 2v.29 0.725 25.18 0.752
Bicubic x4 2842 0.810 26.00 0.703 2596 0.668 23.14 0.658
VDSR_BNN x4 29.02 0.827 26.55 0.724 26.29 0.685 23.55 0.685
VDSR_DoReFa x4 29.39 0.837 26.79 0.728 26.45 0.689 23.81 0.696
VDSR_ABC x4 2059 0.841 29.63 0.730 26.51 0.687 23.96 0.699
VDSR_BAM x4 30.31 0.860 27.46 0.749 26.83 0.706 24.38 0.720

BT EEPE T VDSRIEEAT , SHESOTA
£5521.250B (x2 Set5), SEfEEMNKBIEE
0.58dB (x2 B100),

[Xin J, Wang N, Jiang X, Li J, Huang H, Gao X. Binarized Neural Network for Single Image Super Resolution . ECCV-20]

SRResNet Bicubic SRResNet-BNN
(PSNR/SSIM) (20.96/0.522) (21.97 /0590)

SRResNet-DoReFa SRResNet-ABC SRResNet-BAM
(22.59/0.615) (22.71/0.612) (22.91/0.639)

SRResNet SRResNet-BNN SRResNet-ABC-Net SRResNet-BAM(Ours)
(W-32 A-32) (W-1 A-1) (W-1 A-1) (W-1 A-1)
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—. BIE (Preface) : HAEEHEGERE?

— IEI{%-EQH"%}:& (Sketch-Photo Synthesis)
= 1%@%;#5@ (Image Super-resolution Reconstruction)
Y., H4iH<RME (other Related Applications)

1. QEEEiE (Conclusions)
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n
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Lee, D., Kim, J., Moon, W. J., & Ye, J. C. “CollaGAN: Collaborative GAN for missing image data imputation,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR19), pp. 2487-2496, June 16-20, 2019, Long Beach, CA, USA
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Bing Cao, Han Zhang, Nannan Wang, Xinbo Gao, Dinggang Shen, “Auto-GAN: Self-Supervised Collaborative Learning for Medical Image Synthesis,”
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20), February 7-12, 2020, New York, New York, USA.
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